Efficient Algorithms for Creation of Linearly-independent Decision Diagrams and their Mapping to Regular Layouts
نویسندگان
چکیده
A new kind of a decision diagrams are presented: its nodes correspond to all types of nonsingular expansions for groups of input variables, in particular pairs. The diagrams are called the Linearly Independent (LI) Decision Diagrams (LI DDs). There are 840 nonsigular expansions for a pair of variables, thus 840 different types of nodes in the tree. Therefore, the number of nodes in such (exact) diagrams is usually much smaller than the number of nodes in the well-known Kronecker diagrams (which have only single-variable Shannon, Positive Davio, and Negative Davio expansions in nodes). It is usually much smaller than 1/3 of the number of nodes in Kronecker diagrams. Similarly to Kronecker diagrams, the LI Diagrams are a starting point to a synthesis of multilevel AND/OR/EXOR circuits with regular structures. Other advantages of LI diagrams include: they generalize the well-known Pseudo-Kronecker Functional Decision Diagrams, and can be used to optimize the new type of PLAs called LI PLAs. Importantly, while the known decision diagrams used AND/EXOR or AND/OR bases, the new diagrams are AND/OR/EXOR-based. Thus, because of a larger design space, multi-level structures of higher regularity can be created with them. This paper presents both new concepts and new efficient synthesis algorithms.
منابع مشابه
Ternary and Quaternary Lattice Diagrams for Synthesis Linearly - Independent Logic , Multiple - Valued Logic , and Analog
Ternary and Quaternary Lattice Diagrams are introduced that can find applications to submicron design, and designing new fine-grain digital, analog and mixed FPGAs. They expand the ideas of Lattice diagrams [6, 111 and Linearly Independent (LI) Logic [5, 7, 8, 9, 10, 12, 17, 181. In a regular layout, every cell is connected to 4 , 6 or 8 neighbors and to a number of vertical, horizontal and dia...
متن کاملGenerating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملEfficient Operations On MDDs for Building Constraint Programming Models
We propose improved algorithms for defining the most common operations on Multi-Valued Decision Diagrams (MDDs): creation, reduction, complement, intersection, union, difference, symmetric difference, complement of union and complement of intersection. Then, we show that with these algorithms and thanks to the recent development of an efficient algorithm establishing arc consistency for MDD bas...
متن کاملFunction-driven Linearly Independent Expansions of Boolean Functions
The paper presents a family of new expansions of Boolean functions called Function-driven Linearly Independent (fLI) expansions. On the basis of this expansion a new kind of a canonical representation of Boolean functions is constructed: Function-driven Linearly Independent Binary Decision Diagrams (fLIBDDs). They generalize both Function-driven Shannon Binary Decision Diagrams (fShBDDs) and Li...
متن کاملApplication Mapping onto Network-on-Chip using Bypass Channel
Increasing the number of cores integrated on a chip and the problems of system on chips caused to emerge networks on chips. NoCs have features such as scalability and high performance. NoCs architecture provides communication infrastructure and in this way, the blocks were produced that their communication with each other made NoC. Due to increasing number of cores, the placement of the cores i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- VLSI Design
دوره 2002 شماره
صفحات -
تاریخ انتشار 2002